Post-diagnosis serum 25-hydroxyvitamin D concentrations in women treated for breast cancer participating in a lifestyle trial in Italy

Submitted: 10 August 2023
Accepted: 30 October 2023
Published: 22 March 2024
Abstract Views: 262
PDF: 180
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Objective. To report cross-sectionally serum levels of 25-hydroxyvitamin D [25(OH)D] in women living in Italy within 12 months from breast cancer (BC) diagnosis.

Methods. Baseline data were obtained from 394 women diagnosed with primary BC, enrolled from 2016 to 2019 in a lifestyle trial conducted in Italy. Subjects’ characteristics were compared between two 25(OH)D concentrations (hypovitaminosis D<20 and ≥20 ng/mL) with the Chi-squared test or Fisher’s exact test for small-expected counts. Using multiple logistic regression-adjusted models, we estimated odds ratios (ORs) of hypovitaminosis D with 95% confidence intervals (CIs) in the total sample and in the unsupplemented subgroup.

Results. Hypovitaminosis D was found in 39% of all subjects, 60% in unsupplemented subjects, and 10% in supplemented subjects. Increasing ORs of hypovitaminosis D were found with increasing body mass index, 25-30, >30, and ≥35 versus <25 kg/m2 (ORs: 2.50, 4.64, and 5.81, respectively, in the total cohort and ORs: 2.68, 5.38, and 7.08 in the unsupplemented); living in the most southern Italian region (OR 2.50, 95%CI 1.22-5.13); and with hypertriglyceridemia (OR 2.46; 95%CI 1.16-5.22), chemotherapy history (OR 1.86, 95%CI 1.03-3.38), and inversely with anti-estrogenic therapy (OR 0.43, 95%CI 0.24-0.75) in the total sample.

Conclusions. Hypovitaminosis D in women recently diagnosed with BC and participating in a lifestyle trial in Italy was widespread and highest with obesity, hypertriglyceridemia, and chemotherapy use. Considering that hypovitaminosis D is a risk factor for lower efficacy of bone density treatments and possibly BC mortality, our results suggest the need to promptly address and treat vitamin D deficiency.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021; 71: 7-33. DOI: https://doi.org/10.3322/caac.21654
Dafni U, Tsourti Z, Alatsathianos I. Breast cancer statistics in the European Union: incidence and survival across European countries. Breast Care (Basel) 2019; 14: 344-53. DOI: https://doi.org/10.1159/000503219
Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, et al. Annual report to the nation on the status of cancer, part i: national cancer statistics. Cancer 2018; 124: 2785-800. DOI: https://doi.org/10.1002/cncr.31551
Porciello G, Montagnese C, Crispo A, Grimaldi M, Libra M, Vitale S, et al. Mediterranean diet and quality of life in women treated for breast cancer: a baseline analysis of DEDiCa multicentre trial. PLoS One 2020; 15: e0239803. DOI: https://doi.org/10.1371/journal.pone.0239803
Song D, Deng Y, Liu K, Zhou L, Li N, Zheng Y, et al. Vitamin D intake, blood vitamin D levels, and the risk of breast cancer: a dose-response meta-analysis of observational studies. Aging (Albany NY) 2019; 11: 12708-32. DOI: https://doi.org/10.18632/aging.102597
Shirazi L, Almquist M, Borgquist S, Malm J, Manjer J. Serum vitamin D (25OHD3) levels and the risk of different subtypes of breast cancer: a nested case-control study. Breast 2016; 28: 184-90. DOI: https://doi.org/10.1016/j.breast.2016.06.002
Friedman CF, DeMichele A, Su HI, Feng R, Kapoor S, Desai K, et al. Vitamin D deficiency in postmenopausal breast cancer survivors. J Womens Health (Larchmt) 2012; 21: 456-62. DOI: https://doi.org/10.1089/jwh.2011.3009
Li C, Li H, Zhong H, Li X. Association of 25-hydroxyvitamin D level with survival outcomes in female breast cancer patients: a meta-analysis. J Steroid Biochem Mol Biol 2021; 212: 105947. DOI: https://doi.org/10.1016/j.jsbmb.2021.105947
Rejnmark L, Bislev LS, Cashman KD, Eiríksdottir G, Gaksch M, Grübler M, et al. Non-skeletal health effects of vitamin D supplementation: a systematic review on findings from meta-analyses summarizing trial data. PLoS One 2017; 12: e0180512. DOI: https://doi.org/10.1371/journal.pone.0180512
Gatti D, Bertoldo F, Adami G, Viapiana O, Lello S, Rossini M, et al. Vitamin D supplementation: much ado about nothing. Gynecol Endocrinol 2020; 36: 185-9. DOI: https://doi.org/10.1080/09513590.2020.1731452
Keum N, Lee DH, Greenwood DC, Manson JE, Giovannucci E. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann Oncol 2019; 30: 733-43. DOI: https://doi.org/10.1093/annonc/mdz059
Chandler PD, Chen WY, Ajala ON, Hazra A, Cook N, Bubes V, et al. Effect of vitamin D3 supplements on development of advanced cancer: a secondary analysis of the VITAL randomized clinical trial. JAMA Netw Open 2020; 3: e2025850. DOI: https://doi.org/10.1001/jamanetworkopen.2020.25850
Becerra-Tomás N, Balducci K, Abar L, Aune D, Cariolou M, Greenwood DC, et al. Postdiagnosis dietary factors, supplement use and breast cancer prognosis: Global Cancer Update Programme (CUP Global) systematic literature review and meta-analysis. Int J Cancer 2023; 152: 616-34. DOI: https://doi.org/10.1002/ijc.34321
Servitja S, Nogués X, Prieto-Alhambra D, Martínez-García M, Garrigós L, Peña MJ, et al. Bone health in a prospective cohort of postmenopausal women receiving aromatase inhibitors for early breast cancer. Breast 2012; 21: 95-101. DOI: https://doi.org/10.1016/j.breast.2011.09.001
Nogues X, Servitja S, Peña MJ, Prieto-Alhambra D, Nadal R, Mellibovsky L, et al. Vitamin D deficiency and bone mineral density in postmenopausal women receiving aromatase inhibitors for early breast cancer. Maturitas 2010; 66: 291-7. DOI: https://doi.org/10.1016/j.maturitas.2010.03.012
Imtiaz S, Siddiqui N, Raza SA, Loya A, Muhammad A. Vitamin D deficiency in newly diagnosed breast cancer patients. Indian J Endocrinol Metab 2012; 16: 409-13. DOI: https://doi.org/10.4103/2230-8210.95684
Kok DE, van den Berg MMGA, Posthuma L, van ’t Erve I, van Duijnhoven FJB, de Roos WK, et al. Changes in circulating levels of 25-hydroxyvitamin D3 in breast cancer patients receiving chemotherapy. Nutr Cancer 2019; 71: 756-66. DOI: https://doi.org/10.1080/01635581.2018.1559938
Jacot W, Pouderoux S, Thezenas S, Chapelle A, Bleuse JP, Romieu G, et al. Increased prevalence of vitamin D insufficiency in patients with breast cancer after neoadjuvant chemotherapy. Breast Cancer Res Treat 2012; 134: 709-17. DOI: https://doi.org/10.1007/s10549-012-2084-7
Jacot W, Firmin N, Roca L, Topart D, Gallet S, Durigova A, et al. Impact of a tailored oral vitamin D supplementation regimen on serum 25-hydroxyvitamin D levels in early breast cancer patients: a randomized phase III study. Ann Oncol 2016; 27: 1235-41. DOI: https://doi.org/10.1093/annonc/mdw145
Viala M, Firmin N, Touraine C, Pouderoux S, Metge M, Rifai L, et al. Changes in vitamin D and calcium metabolism markers in patients undergoing adjuvant chemotherapy for breast cancer. BMC Cancer 2021; 21: 815. DOI: https://doi.org/10.1186/s12885-021-08563-4
Chartron E, Firmin N, Touraine C, Chapelle A, Legouffe E, Rifai L, et al. A phase II multicenter trial on high-dose vitamin D supplementation for the correction of vitamin D insufficiency in patients with breast cancer receiving adjuvant chemotherapy. Nutrients 2021; 13: 4429. DOI: https://doi.org/10.3390/nu13124429
Charehbili A, Hamdy NAT, Smit VTHBM, Kessels L, van Bochove A, van Laarhoven HW, et al. Vitamin D (25-0H D3) status and pathological response to neoadjuvant chemotherapy in stage II/III breast cancer: Data from the NEOZOTAC trial (BOOG 10-01). Breast 2016; 25: 69-74. DOI: https://doi.org/10.1016/j.breast.2015.10.005
Manios Y, Moschonis G, Lambrinou CP, Tsoutsoulopoulou K, Binou P, Karachaliou A, et al. A systematic review of vitamin D status in southern European countries. Eur J Nutr 2018; 57: 2001-36. DOI: https://doi.org/10.1007/s00394-017-1564-2
Augustin LSA, Libra M, Crispo A, Grimaldi M, De Laurentiis M, Rinaldo M, et al. Low glycemic index diet, exercise and vitamin D to reduce breast cancer recurrence (DEDiCa): design of a clinical trial. BMC Cancer 2017; 17: 69. DOI: https://doi.org/10.1186/s12885-017-3064-4
Adami S, Romagnoli E, Carnevale V, Scillitani A, Giusti A, Rossini M, et al. Guidelines on prevention and treatment of vitamin D deficiency. Italian Society for Osteoporosis, Mineral Metabolism and Bone Diseases (SIOMMMS). Reumatismo 2011; 63: 129-47. [Article in Italian]. DOI: https://doi.org/10.4081/reumatismo.2011.129
Agenzia Italiana del Farmaco. DIBASE, summary of product characteristics; 2022. Available from: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_000972_036635_RCP.pdf&sys=m0b1l3.
Delle Monache S, Di Fulvio P, Iannetti E, Valerii L, Capone L, Nespoli MG, et al. Body mass index represents a good predictor of vitamin D status in women independently from age. Clin Nutr 2019; 38: 829-34. DOI: https://doi.org/10.1016/j.clnu.2018.02.024
Gammone M, Danese A, D’Orazio N. Prevalence of 25(OH)D insufficiency and overweight/obesity in an adult population from the central Italy. Clin Ter 2022; 173: 334-41.
Mai XM, Chen Y, Camargo CA, Langhammer A. Cross-sectional and prospective cohort study of serum 25-hydroxyvitamin D level and obesity in adults: the HUNT study. Am J Epidemiol 2012; 175: 1029-36. DOI: https://doi.org/10.1093/aje/kwr456
Barja-Fernández S, Aguilera CM, Martínez-Silva I, Vazquez R, Gil-Campos M, Olza J, et al. 25-Hydroxyvitamin D levels of children are inversely related to adiposity assessed by body mass index. J Physiol Biochem 2018; 74: 111-8. DOI: https://doi.org/10.1007/s13105-017-0581-1
Recalde M, Davila-Batista V, Díaz Y, Leitzmann M, Romieu I, Freisling H, et al. Body mass index and waist circumference in relation to the risk of 26 types of cancer: a prospective cohort study of 3.5 million adults in Spain. BMC Med 2021; 19: 10. DOI: https://doi.org/10.1186/s12916-020-01877-3
Waqas K, Lima Ferreira J, Tsourdi E, Body JJ, Hadji P, Zillikens MC. Updated guidance on the management of cancer treatment-induced bone loss (CTIBL) in pre- and postmenopausal women with early-stage breast cancer. J Bone Oncol 2021; 28: 100355. DOI: https://doi.org/10.1016/j.jbo.2021.100355
Pedersini R, Amoroso V, Maffezzoni F, Gallo F, Turla A, Monteverdi S, et al. Association of fat body mass with vertebral fractures in postmenopausal women with early breast cancer undergoing adjuvant aromatase inhibitor therapy. JAMA Netw Open 2019; 2: e1911080. DOI: https://doi.org/10.1001/jamanetworkopen.2019.11080
Lou YR, Murtola T, Tuohimaa P. Regulation of aromatase and 5α-reductase by 25-hydroxyvitamin D3, 1α,25-dihydroxyvitamin D3, dexamethasone and progesterone in prostate cancer cells. J Steroid Biochem Mol Biol 2005; 94: 151-7. DOI: https://doi.org/10.1016/j.jsbmb.2005.01.024
Schwartz B, Smirnoff P, Shany S, Liel Y. Estrogen controls expression and bioresponse of 1,25-dihydroxyvitamin D receptors in the rat colon. Mol Cell Biochem 2000; 203: 87-93. DOI: https://doi.org/10.1023/A:1007015027268
Cutolo M, Sulli A, Straub RH. Estrogen’s effects in chronic autoimmune/inflammatory diseases and progression to cancer. Expert Rev Clin Immunol 2014; 10: 31-9. DOI: https://doi.org/10.1586/1744666X.2014.863149
Greco EA, Lenzi A, Migliaccio S. Role of hypovitaminosis D in the pathogenesis of obesity-induced insulin resistance. Nutrients 2019; 11: 1506. DOI: https://doi.org/10.3390/nu11071506
Szymczak-Pajor I, Drzewoski J, Śliwińska A. The molecular mechanisms by which vitamin D prevents insulin resistance and associated disorders. Int J Mol Sci 2020; 21: 6644. DOI: https://doi.org/10.3390/ijms21186644
Ganji V, Tangpricha V, Zhang X. Serum vitamin D concentration ≥75 nmol/L is related to decreased cardiometabolic and inflammatory biomarkers, metabolic syndrome, and diabetes; and increased cardiorespiratory fitness in US adults. Nutrients 2020; 12: 730. DOI: https://doi.org/10.3390/nu12030730
Contreras-Bolívar V, García-Fontana B, García-Fontana C, Muñoz-Torres M. Mechanisms Involved in the relationship between vitamin D and insulin resistance: impact on clinical practice. Nutrients 2021; 13: 3491. DOI: https://doi.org/10.3390/nu13103491
Cranford TL, Enos RT, Velázquez KT, McClellan JL, Davis JM, Singh UP, et al. Role of MCP-1 on inflammatory processes and metabolic dysfunction following high-fat feedings in the FVB/N strain. Int J Obes (Lond) 2016; 40: 844-51. DOI: https://doi.org/10.1038/ijo.2015.244
Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol 2014; 220: T47-59. DOI: https://doi.org/10.1530/JOE-13-0339
Gholami M, Zoughi M, Larijani B, Abdollahzadeh R, Taslimi R, Rahmani Z, et al. The role of inflammatory miRNA–mRNA interactions in PBMCs of colorectal cancer and obesity patients. Immun Inflamm Dis 2022; 10: e702. DOI: https://doi.org/10.1002/iid3.702
Cutolo M, Smith V, Paolino S, Gotelli E. Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat Rev Rheumatol 2023; 19: 265-87. DOI: https://doi.org/10.1038/s41584-023-00944-2
Aspell N, Laird E, Healy M, Lawlor B, O’Sullivan M. Vitamin D deficiency is associated with impaired muscle strength and physical performance in community-dwelling older adults: findings from the English longitudinal study of ageing. Clin Interv Aging 2019; 14: 1751-61. DOI: https://doi.org/10.2147/CIA.S222143
Bilani N, Elson L, Szuchan C, Elimimian E, Saleh M, Nahleh Z. Newly-identified pathways relating vitamin D to carcinogenesis: a review. In Vivo 2021; 35: 1345-54. DOI: https://doi.org/10.21873/invivo.12387
Santini D, Galluzzo S, Vincenzi B, Zoccoli A, Ferraro E, Lippi C, et al. Longitudinal evaluation of vitamin D plasma levels during anthracycline- and docetaxel-based adjuvant chemotherapy in early-stage breast cancer patients. Ann Oncol 2010; 21: 185-6. DOI: https://doi.org/10.1093/annonc/mdp497
Isenring EA, Teleni L, Woodman RJ, Kimlin MG, Walpole E, Karapetis CS, et al. Serum vitamin D decreases during chemotherapy: an Australian prospective cohort study. Asia Pac J Clin Nutr 2018; 27: 962-7.
Ward G, Simpson A, Boscato L, Hickman PE. The investigation of interferences in immunoassay. Clin Biochem 2017; 50: 1306-11. DOI: https://doi.org/10.1016/j.clinbiochem.2017.08.015
Sturgeon CM, Viljoen A. Analytical error and interference in immunoassay: minimizing risk. Ann Clin Biochem 2011; 48: 418-32. DOI: https://doi.org/10.1258/acb.2011.011073
Roth HJ, Schmidt-Gayk H, Weber H, Niederau C. Accuracy and clinical implications of seven 25-hydroxyvitamin D methods compared with liquid chromatography-tandem mass spectrometry as a reference. Ann Clin Biochem 2008; 45: 153-9. DOI: https://doi.org/10.1258/acb.2007.007091
Wise SA, Camara JE, Burdette CQ, Hahm G, Nalin F, Kuszak AJ, et al. Interlaboratory comparison of 25-hydroxyvitamin D assays: vitamin D standardization program (VDSP) intercomparison study 2 - part 2 ligand binding assays - impact of 25-hydroxyvitamin D2 and 24R,25-dihydroxyvitamin D3 on assay performance. Anal Bioanal Chem 2022; 414: 351-66. DOI: https://doi.org/10.1007/s00216-021-03577-0
Rahme M, Al-Shaar L, Singh R, Baddoura R, Halaby G, Arabi A, et al. Limitations of platform assays to measure serum 25OHD level impact on guidelines and practice decision making. Metabolism 2018; 89: 1-7. DOI: https://doi.org/10.1016/j.metabol.2018.09.003
Sempos CT, Betz JM, Camara JE, Carter GD, Cavalier E, Clarke MW, et al. General steps to standardize the laboratory measurement of serum total 25-hydroxyvitamin D. J AOAC Int 2017; 100: 1230-3. DOI: https://doi.org/10.5740/jaoacint.17-0259
Hanwell HEC, Vieth R, Cole DEC, Scillitani A, Modoni S, Frusciante V, et al. Sun exposure questionnaire predicts circulating 25-hydroxyvitamin D concentrations in Caucasian hospital workers in southern Italy. J Steroid Biochem Mol Biol 2010; 121: 334-7. DOI: https://doi.org/10.1016/j.jsbmb.2010.03.023
Adami S, Giannini S, Bianchi G, Sinigaglia L, Di Munno O, Fiore CE, et al. Vitamin D status and response to treatment in post-menopausal osteoporosis. Osteoporos Int 2009; 20: 239-44. DOI: https://doi.org/10.1007/s00198-008-0650-y

How to Cite

Fassio, A., Porciello, G., Carioli, G., Palumbo, E., Vitale, S., Luongo, A., Montagnese, C., Prete, M., Grimaldi, M., Pica, R., Rotondo, E., Falzone, L., Calabrese, I., Minopoli, A., Grilli, B., Cuomo, M., Fiorillo, P., Evangelista, C., Cavalcanti, E., De Laurentiis, M., Cianniello, D., Pacilio, C., Pinto, M., Thomas, G., Rinaldo, M., D’Aiuto, M., Serraino, D., Massarut, S., Steffan, A., Ferraù, F., Rossello, R., Messina, F., Catalano, F., Adami, G., Bertoldo, F., Libra, M., Crispo, A., Celentano, E., La Vecchia, C., Augustin, L., & Gatti, D. (2024). Post-diagnosis serum 25-hydroxyvitamin D concentrations in women treated for breast cancer participating in a lifestyle trial in Italy. Reumatismo, 76(1). https://doi.org/10.4081/reumatismo.2024.1632