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In particular, IMPDH converts inosine monophos-
phate, produced from adenosine monophosphate
by adenosine deaminase (ADA), in guanosine
mono phosphate. 
By increasing the guanine nucleotide pool, ADA
and, subsequently, IMPDH, exert a positive feed-
back on de novo nucleotide synthesis; in fact, 5-
phosphoribosyl-1-pyrophosphate synthetase and
ribonucleotide reductase are finally stimulated (2). 
Allison et al. (2), observing that children with
ADA deficit were severely immunodeficient,
grasped the strategic role of IMPDH in lympho-
cytic development and proliferation, and tested
MPA as an immunosuppressive agent. 
Lymphocytes constitute the main target of MPA,
because they require de novo nucleotide synthesis,
and also because they specifically express the type
II IMPDH isoform (IMPDH-2), which is 5-fold
more potently inhibited by MPA compared to the
ubiquitarian type I isoform (2). 
However, MPA affects many other cell types;
moreover, some effects seem to be IMPDH-inde-
pendent, since not reversible in presence of ex-
ogenous guanosine in vitro (Tab. I).

INTRODUCTION

MPA is clinically administered as morfolino-
ethyl ester (mycophenolate mofetil, MMF)

or, more recently, as a salt (enteric-coated my-
cophenolate sodium). 
It is a fermentation product of Penicillium brevi-
compactum and other analogue fungi, identified by
Gosio in 1893 as a weak antibacterial agent; in
1969 Franklin and Cook discovered its capacity to
inhibit the inosine mono phosphate dehydrogenase
(IMPDH), an enzyme involved in purine nu-
cleotide synthesis (1). 
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RIASSUNTO

L’acido micofenolico (MPA) è un agente immunosoppressore, sempre più utilizzato in campo trapiantologico, reu-
matologico e nefrologico. In questa rassegna, analizzeremo i meccanismi d’azione del farmaco, apportando le più re-
centi acquisizioni, che suggeriscono nuove applicazioni terapeutiche del MPA, come la fibrosi, il danno vascolare e
l’ipertensione polmonare, in corso di connettivite. 
La somministrazione di adeguate dosi giornaliere e la terapia basata sul monitoraggio del farmaco potrebbero esse-
re determinanti per garantire in vivo le concentrazioni di MPA necessarie a spegnere l’infiammazione e ripristinare
la tolleranza. 
Occorrerà, tuttavia, tenere conto dei possibili eventi avversi gravi (i.e. leucoencefalopatia multifocale progressiva
[PML]) legati all’immunosoppressione.

*Lavoro premiato al XLVI Congresso Nazionale della SIR, Rimini
2009
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Effects on lymphocytes
Proliferation
At low concentration, MPA (100 nM) inhibits T
and B lymphocyte proliferation in response to
mitogens in vitro, and suppresses mixed leuko-
cyte reactions (MLR) even when incubated 3
days after, indicating it acts by blocking DNA
synthesis (3). 

In fact, MPA specifically inhibits the late activa-
tion surface markers (CD154, CD71) (4). Addi-
tionally, MPA blocks IL-2 and IL-15-induced pro-
liferation, since it impedes IL-2-mediated down-
regulation of the cycline (cyc)-dependent kinase
(CDK) inhibitor p27/Kip1 (4); thus, CycD/CDK6
and CycE/CDK2 complex activation fails and
cells cannot transit from G1 to S phase.

Table I - Mechanisms of action of MPA.

Effect Cellular targets Molecular mechanisms IMPDH-dependent References
(observed or hypothesized) (GTP depletion)

Proliferation Lymphocytes, DNA synthesis inhibition; Yes (3; 5; 21; 40-41; 48),
inhibition monocytes, endothelial CDK inhibitor p27/Kip1 maintenance ? (4)

cells, fibroblasts,
mesangial cells, VSMC

Apoptosis Lymphocytes, Caspase induction ? (5-7)
induction monocytes

Necrosis Lymphocytes RhoGDI-2 cleavage by caspase-3 ? (8-9)
induction leads to Cdc42 up-regulation and 

cytoskeleton changes

Cytokine T lymphocytes, mRNA synthesis inhibition; Yes (6; 10-11; 15; 21)
production monocytes, DCs, NF-kB inhibition ? (No) (20-21)
inhibition endothelial cells

Immunoglobulin B lymphocytes mRNA synthesis inhibition (?) ? (Yes) (12-14)
production 
inhibition

TLR-induced B lymphocytes, DCs MD-1 protein reduction; ? (10)
cell activation p38MAPK inhibition; No (31; 39)
inhibition NF-kB inhibition (?) ?

Surface protein Monocytes, DCs, mRNA synthesis inhibition; Yes (17; 19; 21; 27-30)
expression and endothelial cells membrane protein Yes (18)
cell-cell N-glycosylation inhibition; No (31)
interaction p38MAPK inhibition
inhibition

ECM synthesis Fibroblasts, mesangial mRNA synthesis inhibition; Yes (39-43)
inhibition and cells, VSMC Rac1 inhibition and b-calp Yes (45; 48)
cytoskeleton up-regulation;
alterations PDGF-B and Egr-1 down-regulation No (47)

Oxidative stress Endothelial cells, Rac1 and PKC inhibition
inhibition and neutrophils, mesangial leads to Nox inhibition; Yes (25; 33; 48)
vascular cells, VSMC Lack of tetrahydrobiopterin
protection leads to iNOS inhibition; Yes (24)

ET-1 decrease and PGI2 increase ? (22-23)

Degranulation Mast cells G-protein inhibition and ? (Yes) (50)
inhibition cytoskeleton dysfunction (?)
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Apoptosis
MPA induces apoptosis in lymphocytes and
monocytes (5-6), including superantigen (staphy-
lococcal enterotoxin B)-activated T lymphocytes
(7); that would be important in transplantology,
since the interaction with MHC-II by superanti-
gens is analogue to that by alloantigens (direct
alloreco gnition) and is critical in acute organ re-
jection.

Necrosis
MPA also causes lymphocytic necrosis in vitro,
through an atypical mechanism dependent on G-
protein Cdc42 recruitment and subsequent actin
polymerization; indeed, necrosis would be pre-
ponderant, earlier and would require lower MPA
concentrations compared to apoptosis (8). 
Cdc42 up-regulation might follow regulatory pro-
tein RhoGDI-2 (Rho GTP dissociation inhibitor-2)
cleavage mediated by caspase-3 (9). 
Thus, MPA-induced caspase activation might lead
to cell death via both apoptosis and necrosis.

Cell function
MPA inhibits cytokine production (TNFα, IFNγ,
IL-12, IL-10, IL-4) by T lymphocytes in animal
models and SLE patients (6, 10); additionally, MPA
(1 µM) blocks IL-15-induced IL-17 production by
peripheral blood-derived T cells, even more strong-
ly than cyclosporine A and leflunomide metabolite
A77-1726 (11). MPA inhibits immunoglobulin pro-
duction by B cells and their differentiation in mem-
ory cells and plasma cells (12, 13). 
In SLE patients, it diminishes the circulating au-
toantibody levels (14). Moreover, MPA may inter-
fere with Toll-like receptor (TLR)-mediated acti-
vation of B lymphocytes and dendritic cells (DCs),
via MD-1 protein reduction (10). 

Effects on monocytes
MPA (10 µM) is antiproliferative and proapoptot-
ic on monocytes and monocyte precursors (3, 5),
induces the terminal differentiation of monocytes
in macrophages (5), reduces IL-1β and increases
IL-1 receptor antagonist production (15). 
Furthermore, MPA reduces monocyte and lym-
phocyte chemotaxis to inflammation sites (16), via
ICAM-1 and MHC-II expression inhibition (17)
and adhesion protein N-glycosylation blockade,
the latter due to intracellular guanosine nucleotide
depletion and, subsequently, guanosine triphos-
phate (GTP)-dependent fucose and mannose mem-
brane transfer impairment (18).

Effects on endothelial cells
MPA (5-20 µM) inhibits the cytokine-induced ex-
pression of E-selectin (CD62E), VCAM-1 (CD106),
CD34, ICAM-1 (CD54), NF-kB and IL-6 produc-
tion (19-21). 
It impedes endothelial migration, proliferation and
angiogenesis in vitro (21). 
In addition, MPA reduces endothelin-1 (ET-1) ex-
pression (22) and increases prostacyclin (PGI2) re-
lease (23); it suppresses the cytokine-induced pro-
duction of nitric oxide (NO) (24), presumably be-
cause of lack of GTP-derived tetrahydrobiopterin,
essential coenzyme of the inducible NO synthetase
(iNOS). 
Moreover, MPA (1-10 µM) inhibits superoxide an-
ion production by endothelial NADPH-oxidase
(Nox), since GTP depletion leads to the inactiva-
tion of Rac1, a G-protein involved in Nox activity
(25). Instead, the effects on ICAM-1 and IL-6 seem
to be IMPDH-independent (21).

Effects on dendritic cells
Similarly to what previously observed in murine
models of delayed contact hypersensitivity (26),
also in human monocyte-derived DCs, MPA (10
µM) reduces the surface expression of costimula-
tion and interaction molecules (CD40, CD54,
CD86, CD80, CD83) and cytokine production
(TNFα, IL-12, IL-18) (27). 
Moreover, TNFα-stimulated DCs incubated with
MPA (100 µM) do not acquire maturation mor-
phologic features and continue to express immature
cell receptors, like CXCR1 (28). 
In addition, a recent study on myeloid DCs found
that MPA (100 µM) increases the expression of
chemokine receptor CCR1 and decreases CCR7
levels, and strongly contrasts the effects of TLR3
ligation on DC activation and maturation, which in-
clude the down-regulation of receptors for inflam-
matory cytokines (CCR1, CCR2, CCR5) and the
up-regulation of lymph node chemokine receptors
(CCR7); basically, MPA, inhibiting DC homing
from periphery to lymph nodes, would interfere
with key events in breaking peripheral tolerance in
AID or in provoking a chronic allograft rejection
in transplant recipients (29). 
Other authors found that MPA 50 µg/mL (corre-
sponding to 150 µM) also leads to CD205 down-
regulation, probably contributing to antigen uptake
impairment (30). LPS-stimulated and MPA-pre-
treated DCs show decreased phosphorylation of
p38 MAPK (mitogen-activated protein kinase),
necessary for DC maturation (31). 
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Allogeneic T cells incubated with MPA-treated
DCs are not only impeded to proliferate (28, 29),
but also acquire suppressive activity against control
T cell proliferation; in fact, they become antigen-
specific and contact-dependent regulatory T cells
(Treg), expressing high levels of CD25, Foxp3, CT-
LA-4, CD95 (Fas), and producing high amounts of
IL-10 and TGFβ (32). 
The block of DC maturation and tolerogenicity
could be due to both IMPDH-dependent and IM-
PDH-independent mechanisms: guanosine deple-
tion may provoke surface marker mRNA synthesis
impairment (30); on the other hand, inhibition of
both p38 MAPK phosphorylation in DCs and al-
logeneic T cell proliferation in co-cultures is not re-
versible after guanosine addition (28, 31). 
The great majority of studies on DCs typically con-
sidered much higher MPA concentrations (more
often 100 µM) compared to experiments on other
cell types (more often up to 10 µM); in fact, only
100 µM may guarantee the full down-regulation of
costimulatory and adhesion markers in DCs and
the induction of a specific chemokine receptor ex-
pression pattern (29). 

Effects on neutrophils
Whereas initial observations seemed to exclude
MPA effects on neutrophils, MPA was subse-
quently found to suppress TNFα-induced en-
dothelial adhesion of neutrophils (21). MPA (1-10
µM) also inhibits superoxide anion and hydrogen
peroxide production in neutrophils activated in vit-
ro, because of Nox activation impairment by Rac1
or Protein kinase C (PKC) (25, 33). 
Nevertheless, an increase in hydrogen peroxide
production was even observed after 30 minutes
from neutrophil activation; that might explain the
paradoxical acute inflammatory syndrome rarely
reported in patients treated with MMF (34-35). 

Effects on fibroblasts
MMF therapy suppresses TGFβ expression in hu-
man transplanted kidney biopsies (36), similarly
to what initially observed in a rat renal transplant
model (37). MMF treatment also leads to TGFβ
level reduction in the lungs of lupus-prone MRL/lpr
mice (38). 
Additionally, MMF (0.1-10 µM) decreases type I
collagen and increases MMP-1 expression, and in-
hibits α-smooth muscle actin expression, hallmark
of the myofibroblast phenotype (39). 
MPA (10 µM) almost abolishes fibroblast prolif-
eration and significantly down-regulates gene ex-

pression of several cytoskeletal proteins; actin
and tubulin filaments lose their regular orienta-
tion and vinculin does not localize in focal ad-
hesions, with subsequent decrease in FAK (focal
adhesion kinase) phosphorylation and gross al-
terations of fibroblasts, which acquire an ovoid
shape and lose migration, adhesion and wound-
healing skills (40).

Effects on mesangial cells
MPA (1-10 µM) inhibits proliferation and extra-
cellular matrix (ECM: type I collagen and fi-
bronectin) production in human mesangial cells,
and their contraction and migration skills in vitro
(41). Recently, MPA was found to inhibit anti-DNA
antibody-induced PKC activation and subsequent
TGFβ and fibronectin synthesis in human mesan-
gial cells, and reduced proteinuria in lupus-prone
mice (42). 
MPA also suppresses fibronectin and oxygen rad-
ical production by murine mesangial cells stimu-
lated by high-dose glucose (43), and MMF can pre-
vent nephrin and podocin loss in experimental di-
abetic nephropathy, with a marked attenuation of
proteinuria (44). 
Rac-1 inactivation, as a consequence of MPA-in-
duced GTP depletion, leads to an increase of basic
calponin (b-calp), a protein associated to actin
fibers; that would finally cause mesangial cell in-
activity (45) and would confer protection in
glomerulonephritis (46). 
Furthermore, MPA down-regulates PDGF-B and
PDGF-BB induced Egr-1 (early growth response
gene-1) expression in rat mesangial cells; these
effects are not reversible after guanosine addi-
tion (47). 

Table II - Rheumatic diseases treated with MPA.

Rheumatic disease References

Lupus nephritis (14; 53-57)

Lupus non-renal manifestations (reviewed in 58)

ANCA-related vasculitis (59-62)

Systemic sclerosis (63-65)

Idiopathic inflammatory myopathies (reviewed in 52)

Takayasu arteritis (66)

Behçet disease (67)

Sjögren syndrome (68)

Rheumatoid arthritis (reviewed in 69)

Psoriatic arthritis (70)
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Effects on vascular smooth muscle cells
MPA (0.1-10 µM) inhibits rat vascular smooth
muscle cell (VSMC) proliferation, their produc-
tion of collagen, fibronectin and oxygen radicals,
and Rac-1 activity (48). 
In the rat monocrotaline model of pulmonary hy-
pertension, MMF significantly reduces the medial
thickness of pulmonary arteries and the right ven-
tricle wall thickness, macrophage infiltration and
the endothelial expression of P-selectin and IL-6
(49). MPA also inhibits the proliferation of VSM-
Cs derived from human pulmonary arteries in vit-
ro (49). 

Effects on mast cells
MPA (1-10 µM) inhibits rat mast cell degranula-
tion, leading to a significant decrease in serotonin
release (50). That may explain MMF efficacy in
the treatment of refractory chronic idiopathic ur-
ticaria (51).

Effects on rheumatic patients
MMF has been successfully used in several rheu -
matic diseases (Tab. II) (14, 52-70). 
Thanks to its efficacy against kidney transplant re-
jection and its nephroprotective properties, studies
mainly focused on lupus nephritis (LN) as both in-
duction (53-57) and maintenance (14) therapy, and
on ANCA-positive vasculitides (59-62). 
Moreover, the antifibrotic role of MPA, added to its
actions in favor of endothelial protection and
against experimental pulmonary hypertension, en-
couraged studies on systemic sclerosis (SSc) (63-
65). The better results in chronicity index at re-
biopsy in LN patients on MMF compared to those
on cyclophosphamyde (CTX) (55), and the lower
occurrence of clinically significant pulmonary fi-
brosis in MMF-treated SSc patients compared to
control groups (64), may be at least partly conse-
quent to MPA antifibrotic action. 
Critical issues concerning treatment outcomes are
the daily dose administrated and the drug concen-
tration achieved in vivo. 
Low MMF-dosing could have been responsible
for the high rate of relapse, mainly experienced in
vasculitis patients (60-62); also in LN manage-
ment a slower rate of MMF tapering was soon
adopted (54). Whereas MMF 2 g/day was found
to be comparable to CTX in LN induction thera-
py (53-55), MMF 3 g/day seemed to be even su-
perior to CTX (56). 
A subsequent larger trial did not confirm such a re-
sult, even though asserted the non-inferiority of

MMF compared to CTX; nevertheless, MMF was
found superior to CTX in Black and Hispanic pa-
tient group (57). 
It is noteworthy that, although the target daily
MMF dose in this study was 3 g/day, the mean
dose actually given was 2.47 g/day; moreover, the
median dose was higher in Black and Hispanic pa-
tients (2.8 g/day) than in White and Asian patients
(2.6 g/day) (57). 
To date, MMF dose of 2 g/day is considered com-
parable to azathioprine as LN maintenance thera-
py (14), whereas 3 g/day is recommended as LN
induction therapy. 
The great majority of studies on other rheumatic
diseases tested MMF at 2 g/day or less, and 3 g/day
have been only recently considered in SSc patients
(65); therefore, better results are expected from
next studies on full-dose therapy. 
On the other hand, there is an increasing interest on
therapeutic drug monitoring of MPA in non-trans-
planted patients, particularly AID patients (71-73).
In fact, low plasma albumin levels, proteinuria >1
g/24 h, renal failure (74-75), concomitant medica-
tions (cyclospo rine (74), steroids (76), proton-
pump inhibitors (77), etc.), and genetics (enzyme
polymorphisms (78)) can heavily interfere with
MPA exposure, and may explain the great inter-in-
dividual variability observed in MPA pharmacoki-
netics. 
Thus, a fixed-dose MMF therapy could not guar-
antee the concentrations required for MPA effects
on cells in vivo. 
In AID (Lupus and vasculitis) patients taking MMF
2 g/day for at least 10 weeks prior to the study, clin-
ical endpoints significantly correlated with MPA
trough levels at 12 h (pre-dose levels, C12h), but not
with MMF dose (72); in particular, the disease re-
lapsed in 41% of patients with C12h <2 mg/L, in
29% of those with C12h <3 mg/L, in 2% of those
with C12h 3-3.5 mg/L and in none of the patients
with C12h ≥3.5 mg/L. 
These authors suggested a target range for C12h of
3.5-4.5 mg/L (quantified by high-performance liq-
uid chromatography), as an upper threshold of 4.5
mg/L best discriminated between patients with and
without adverse events (72). 
In AID patients, C12h is significantly correlated to
MPA-area under the concentration versus time
curve (AUC) at 12 h (71, 72). 
In Lupus patients treated with MMF for 31±30
months at a mean dose of 1.6±0.5 g/day, other au-
thors found a significant correlation between C12h

and C4 complement fraction levels: specifically,
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patients with C4 consumption or normal C4 con-
centrations had mean C12h values equal to 1.7 or
3.8 mg/L, respectively (quantified by enzyme-mul-
tiplied immunotechnique) (73). Thus, MPA trough
levels ≥3-3.5 mg/L may be adequate for mainte-
nance of remission. 
These levels correspond to MPA concentrations
proved to be sufficient for in vitro effects on nu-
merous cell types (10 µM, equal to 3.2 mg/L). In-
stead, many MPA actions on DCs would require
about 10-fold higher concentrations; therefore, it
remains questionable to what extent DCs are actu-
ally affected by MMF treatment in vivo. 
In this regard, not MPA trough levels but rather
MPA maximum concentrations (Cmax) might pre-
dict the achievement in the patient of a congruous
dose of MPA (virtually ≥32 mg/L) capable of not
only switching off inflammation but also restoring
peripheral tolerance. 
It is known that both Cmax and AUC rapidly increase
in the first three months of therapy, whereas rise
more slowly later (79). In fact, a subset of AID pa-
tients taking MMF 2 g/day for at least 10 weeks
reached Cmax values ≥32 mg/L (mean Cmax

21.8±14.09 mg/L) (71).

Severe adverse events
At any rate, the risk of severe adverse events asso-
ciated to immune suppression must be minded dur-
ing MPA dosing assessment. 
Actually, MMF therapy has been related to sever-

al infections, sometimes life-threatening, by virus-
es like cytomega lovirus, poliomavirus, varicella
(80, 81). 
The infection risk would be higher compared to
that of patients on azathioprine (80, 82). Critical
factors seem to be daily dose, leucopenia, virus-
specific IgM level decrease (82, 83). 
Importantly, MMF use may be associated to PML,
interpreted as an opportunistic infection of the
brain by JC and BK poliomavirus (84, 85). 
In a large retrospective cohort study of renal trans-
plant recipients, the incidence density of PML in
MMF users was 14.4 cases/100,000 person-years
at risk versus 0 for non-MMF users, although the
difference was not statistically significant; pre-
transplant transfusion and use of antirejection
medications in the first year were found to be fa-
voring factors (85). 

CONCLUSION

MPA seems to represent a precious tool in the
hands of rheumatologists, since it has pleiotropic
effects on both immune and non-immune cells, re-
sulting in immune suppression, fibrosis inhibition,
renal and vascular protection. 
Further studies are needed to assess whether full-
dose therapy and therapeutic drug monitoring can
confer additional advantages in the management
of AID patients.

SUMMARY
Mycophenolic acid (MPA) is an immunosuppressive agent, more and more extensively used in transplantation, rheuma-
tology and nephrology. 
In this review, we will analyze the molecular mechanisms of its action, including the newest insights, in particular the
inhibition of lymphocytes and the induction of tolerogenic dendritic cells (DCs) and its direct effects on non-immune
cells (fibroblasts and myofibroblasts, mesangial cells, vascular smooth muscle cells [VSMC], endothelial cells). 
The latters suggest new therapeutic indications, specifically fibrosis (i.e. glomerulosclerosis and interstitial lung dis-
eases), vascular damage and pulmonary hypertension, which represent key pathogenic features in connective tissue
diseases. 
Given the differences in sensitivity to MPA among the various cell types and the great inter-individual variability in
MPA pharmacokinetics, adequate daily doses and therapeutic drug monitoring may be decisive to ensure those MPA
concentrations needed to switch off inflammation and restore peripheral tolerance in autoimmune disease (AID) pa-
tients. 
A warning on the severe adverse events strictly linked to immune suppression (i.e. progressive multifocal leukoen-
cephalopathy [PML]) will be stressed.

Parole chiave - Acido micofenolico, lupus eritematoso sistemico, sclerosi sistemica, vasculite, leucoencefalopatia mul-
tifocale progressiva.
Key words - Mycophenolic acid, systemic lupus erythematosus, systemic sclerosis, vasculitis, progressive multifocal
leukoencephalopathy.
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