IMMUNOPATHOGENESIS OF PSORIASIS AND PSORIATIC
ARTHRITIS AND PHARMACOLOGICAL PERSPECTIVES

S. LOFFREDO', F. AYALA’, G.C. MARONE', A. GENOVESE"’, G. MARONE"’

'Division of Clinical Immunology and Allergy;
*Division of Dermatology, Department of Systematic Pathology;

Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy

SUMMARY

Psoriasis and psoriatic arthritis are chronic inflammatory disorders resulting from a combination of genetic and en-
vironmental factors, though the precise causal agents have not yet been identified. The immune system has a major
role in their development and the possibility exists that self antigens or antigens from microbial agents, or microbial
superantigens initiate a vigorous immune response. Different subsets of T-lymphocytes and dendritic cells, mast cells
and granulocytes participate in the pathogenesis and several cytokines and chemokines have been identified in tissue
lesions. TNF-a. is a key proinflammatory cytokine with important pathogenetic role in psoriasis and psoriatic arthri-
tis. Evidence from clinical trials targeting the TNF-o—~TNF-a-receptor supports a central role for this cytokine in the
pathogenesis of psoriasis and psoriatic arthritis. Angiogenesis is a prominent early event in lesional psoriatic skin
and in synovial membrane psoriatic arthritis. Future potential targets in the treatment of these disorders include bi-
ologic agents aimed at blockade of other cytokines, chemokines and angiogenic factors.

Key words: Psoriasis, psoriatic arthritis, immunity

Psoriasis is an ancient inflammatory disease, first
described in the Corpus Hippocraticum. Hip-
pocrates (460-377 BCE) used the term psora,
meaning “to itch”. Although the etiology of the
disease remains unknown, it appears to result from
a combination of genetic and environmental fac-
tors. It is frequently inherited, but not following a
classical autosomal mendelian profile. It is a life-
long inflammatory disease with spontaneous re-
missions and exacerbations. Approximately 3% of
the population worldwide is afflicted by psoriasis.
Many factors trigger or exacerbate psoriasis, in-
cluding bacterial pharyngitis, stress, HIV-1, and
various medications (e.g., lithium and B—blockers).
Although the disease is characterized by prolifer-
ation of the epidermis, the immune system has a
prominent role in its development (1).

Five to 42% of patients with psoriasis have psori-
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atic arthritis, a disabling and occasionally destruc-
tive joint disease. The course of this form varies,
with some having mild changes and others severe,
rapid destruction of joints. Psoriatic arthritis is usu-
ally seronegative for rheumatoid factor and pre-
sents in several characteristic forms: oligoarticular
disease, distal interphalangeal arthritis, spondylitis
or sacroiliitis and arthritis mutilans (2). Cutaneous
lesions precede joint disease in 60-70% of patients
and the two begin simultaneously in 10-20%.
Arthritis precedes psoriasis in about 20% of pa-
tients (2, 3). Even when there are no skin lesions,
however, nail changes can usually be found in pa-
tients with psoriatic arthritis (2).

T LYMPHOCYTES AND DENDRITIC
CELLS IN PSORIASIS

In fully developed psoriatic skin lesions, there is a
mixture of innate immune cells (neutrophils, mast
cells, dendritic APCs and NKT cells), adaptive im-
mune cells (both CD4" and CD8" T lymphocytes),
and an inflammatory infiltrate (Fig. 1) (4, 5). There
are two subsets of CD8" T lymphocytes: an epi-
dermal homing subset expressing an integrin
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Figure 1 - Schematic representation of pathophysiology of psoriasis. The initial stimulus activating the immune system in psoriasis is not known.
The development of psoriatic plaque depends on complex interactions among T-lymphocytes [CD4+ T cells, CD8+ T cells, natural killer T
(NKT) cells], dendritic antigen-presenting cells (APC) such as Langerhans cells, plasmacytoid dendritic cells (DCs), mature myeloid DC subsets,
neutrophils and mast cells. DC subsets cause activation of infiltrating T-cells, by cell-cell interactions the immunologic synapse being pivotal
for antigen recognition. The antigen specifity of skin-infiltrating T-lymphocytes has not yet been identified. Many accessory molecules involved
in the immunologic synapse (e.g., lymphocyte function-associated antigen-1, cytotoxic T-lymphocyte antigen-4) have been targeted by biologic
therapies, demonstrating relevance of these pathways in psoriasis. Treg suppressor activities are deficient in skin lesions and in blood of psoriatic
patients, which may permit T-cell proliferation, and chronic overproduction of Th1-derived cytokines (IFN-y, IL-2 and TNF-a) and chemokines.
Therapeutic targeting of TNF-a with biologic agents has proved important role of this mediator of inflammation in psoriasis. Overproduction
of these cytokines and growth factors causes epidermal keratinocytes to hyperproliferate and become resistant to apoptotic signals. This
epidermal hyperproliferation is supported by neoangiogenesis, which is also driven by T-cell-derived inflammatory cytokines and angiogenic

factors produced by mast cells and other cells.

(CD103) (6) and a subset that remains in the der-
mis, in transit either to or from the epidermis. T-
lymphocytes in psoriatic lesions are skin-homing
memory cells, HLA antigen-DR", representing an
activated state and express an o/ T- cell receptors
(TCR). The epidermal CD8" T-lymphocytes also
express CD103 that enables them to interact with
E-cadherin, facilitating their migration into the epi-
dermis. Thus, the major populations of T-cells are
mature, skin-homing, activated memory cells, re-
sponding to peptides presented by mature APCs.

The antigen specificity of skin-infiltrating T-lym-
phocytes has not yet been identified. These cells
may, however recognize self (epidermal- or ker-
atinocyte-derived) polypeptides, those derived from
microbial agents, or microbial superantigens (7). A
classical paradigm addressing the existence of self-

reactive T-lymphocytes is the molecular mimicry
hypothesis, in which an immune response against a
microbe elicits a vigorous immune response against
epitopes cross-reacting with self-antigens (8). The
link between psoriasis and certain microbial infec-
tions (i.e., streptococcal pharyngitis and guttate pso-
riasis) support in part this hypothesis.

Antigen recognition by T-lymphocytes requires that
mature, professional APCs to process polypeptides,
load them onto major histocompatibility complex
class I or II molecules, and ultimately present the
processed peptides to the T-cells together with a
multitude of signals. This complex process requires
antigen presentation in the context of the self-ma-
jor histocompatibility complex (signal 1), a variety
of costimulatory signals (e.g., CD86, CD80, CD40,
lymphocyte function-associated antigen-3, CD54)
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for which there are receptors on the surface of T-
cells (9) (signal 2), and cytokines production by ac-
tivated T-lymphocytes (signal 3). Conjugation of
the T-lymphocyte and the APCs and the formation
of the immunologic synapse results in complete ac-
tivation of T-lymphocytes and the secretion of cy-
tokines that are found in psoriatic lesions [interfer-
on (IFN)-y and tumor necrosis factor (TNF)-a].
Biologic therapies that target the immunologic
synapse and, thus, interfere with T-lymphocyte ac-
tivation have some efficacy in psoriasis (alefacept,
efalizumab, and cytotoxic T-lymphocyte antigen-
4/Ig fusion protein) (10-12).

A variety of APC subtypes accumulates in psori-
atic skin lesions. Myeloid dendritic cells (DCs),
both immature and mature, and small numbers of
plasmacytoid DCs (a source of IFN-a) have been
identified (13, 14). The presence of DC subsets
whose frequency is normally very low in periph-
eral blood, together with activated T-cells, consti-
tutes a fundamental aspect of the disease process,
because the in situ recruitment of both cell types
drives the chronic T-cell activation in the skin le-
sions. Antigen presentation and T-cell activation
occur predominantly in peripheral lymph nodes.
Thus, the identification of this network of cells
within the psoriatic lesions is a fundamental aspect
of how the immune system functions (or dysfunc-
tions) in psoriasis.

DEFECTIVE T-REGULATORY CELLS
IN PSORIASIS

Several subsets of T-lymphocytes have im-
munoregulatory functions (15, 16). One such sub-
set is a CD4" T lymphocyte that constitutively ex-
presses CD25 (the IL-2 receptor a chain) and has
been termed the “T-regulatory cell” (T,,). These
cells suppress immune responses and prevent the
development of autoimmune diseases (17). T,,
cells can suppress the activities of CD4" and CD8"
T-lymphocytes in a nonantigen-specific manner,
both in vitro and in vivo, through two nonexclusive
mechanisms: cell contact and suppressive cy-
tokines such as IL-10 and transforming growth
factor-p (TGF-p) (18). CD4" CD25" T, cells ac-
count for approximately 10% of CD4" T-lympho-
cytes in peripheral blood. Other markers of T,
cells are expression of the transcription factor
FoxP3, the co-stimulation receptor cytotoxic T-
lymphocyte antigen-4 (a signaling molecule that
limits T-lymphocyte proliferation), and neuropilin-

1 (NRP1) (19, 20). Interestingly, NRP1 is ex-
pressed on immune cells as a co-receptor for vas-
cular endothelial growth factor A (VEGF-A), the
most potent angiogenic factor (21).

It has been suggested that reduced T, cell num-
bers or activity might make an individual more
susceptible to autoimmune diseases. T, cells have
a role in tolerance to self-antigens, presumably
protecting the host from autoimmunity. It has been
recently demonstrated that mast cells are essential
in inducing T,_-cell-dependent peripheral toler-
ance (22). Deficient T, cell activity has been as-
sociated with a number of autoimmune conditions,
including rheumatoid arthritis and psoriasis (23-
28). In patients with rheumatoid arthritis treated
with the TNF-a antagonist infliximab, T,, cell ac-
tivity was restored (23). Sugiyama et al. demon-
strated deficient T, cell activity in the peripheral
blood and in skin lesions of patients with psoria-
sis (26). Although the absolute number of circu-
lating T, cells in patients with psoriasis was nor-
mal compared with healthy controls, they showed
some deficiency in their ability to suppress effec-
tor CD4" T-lymphocyte responses. T, cells were
also present in high numbers in skin lesions but,
again were defective in their ability to suppress ef-
fector T-lymphocyte responses in skin lesions.
This helps explain the defective immunoregulato-
ry activity in psoriasis that permits T-lymphocyte
activation and cytokine production. The role of T,,
cell functional deficiency in psoriasis still needs
clarifying.

Manipulation of T, cell expansion or of cytokine
production by these cells could potentially pro-
vide a novel approach to the treatment of psoria-
sis. However, the generation of T, cells in patients
with psoriasis remains problematic in that self-
antigens have not yet been identified.

NKT IN PSORIASIS

Natural Killer T-cells (NKT) are a recently recog-
nized subset of T cells (29), distinct from NK cells
in that they express a TCR, but also certain NK re-
ceptors such as CD94 and CD161. NKT cells may
be double negative (expressing neither CD4 nor
CD8), or they may express CD4. Another distinc-
tive characteristic is their limited TCR repertoire,
characteristically Va24JoQ and VB11 in human
beings, which limits them to recognizing only a
narrow spectrum of antigens (30). This is in marked
contrast to conventional CD4" or CD8" lympho-
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cytes, which are diverse in their TCR expression,
so they recognize a broad spectrum of antigens.
NKT cells recognize glycolipids (o-galactosylce-
ramide or glycosylphosphatidyl inositol) present-
ed in the context of CD1d on the APCs, rather than
processed polypeptides. Glycolipids derived from
sea sponges are an artificial stimulus to activate
NKT-cell proliferation and cytokine production.
The natural ligands for NKT cells have not been
identified. Nonetheless, after activation by a gly-
colipid these cells proliferate and secrete cytokines
such as [FN-y, IL-4 and IL-13 and can mediate cy-
totoxicity. Because of this ability to secrete polar-
izing cytokines such as IFN-y (which favors Thl-
lymphocyte development) or IL-4/IL-13 (which fa-
vors Th2-lymphocyte development), NKT cells are
thought to be important in immunoregulation of
mature Thl- and Th2-lymphocyte—mediated im-
mune responses. When NKT cells vigorously se-
crete IL-2 and IFN-y, they facilitate the develop-
ment of inflammatory diseases; when they secrete
predominantly IL-4 and IL-13, they tend to down-
regulate Th1-lymphocyte—mediated inflammatory
states (29).

There have been conflicting reports as to whether
NKT cells are increased in peripheral blood of pa-
tients with psoriasis (31, 32). NKT cells are found
in the epidermis close to epidermal keratinocytes,
suggesting direct antigen presentation to the former
by the latter. Analysis of cultured keratinocyte-
NKT cell interactions indicated that IFN-y—treated
keratinocytes (mimicking cytokine-driven overex-
pression of CD1d as seen in psoriatic plaques), in
the presence of a-galactosylceramide, induced
NKT cells to produce high levels of IFN-y, but no
detectable IL-4. This polarized cytokine pattern
suggests the presence of activated Thl lympho-
cytes in a psoriatic plaque. Thus, CD1d overex-
pressing keratinocytes contribute to the pathogen-
esis of the inflammatory environment by present-
ing endogenous glycolipids to immunoregulatory
NKT cells, inducing Th1-like cytokines. The de-
finitive role of NKT cells in the pathogenesis of
psoriasis and possibly also psoriatic arthritis re-
mains to be fully elucidated.

NEUTROPHIL GRANULOCYTES
IN PSORIASIS

Early studies indicated that a primary abnormality
in the lesion of psoriasis is the perivascular accu-
mulation of neutrophils and their influx into the

epidermis (33). This leads to microscopically de-
tectable abscesses. In many patients, these micro-
pustules may enlarge and become clinically visible
as sterile 2-3 mm pustules. The presence of neu-
trophils appears to be important for the formation
of psoriatic skin lesions as drug-induced agranulo-
cytosis has been reported to result in the remission
of the disease (34). Neutrophils can contribute to
the hyperproliferation of keratinocytes by the ef-
fects of leukocyte elastase (35).

MAST CELLS IN PSORIASIS
AND PSORIATIC ARTHRITIS

Human mast cells are usually distributed through-
out normal connective tissue, where they may be
found adjacent to blood and lymphatic vessels,
near to or occasionally within nerves, and beneath
epithelial surfaces (36). Mast cells produce a wide
array of mediators and cell-cell signaling mole-
cules, and this variety may account for the cells’
unique features in the immune system (37).
Fischer et al. have reported that skin mast cell den-
sity is increased in psoriasis (38). Mast cells were
the predominant CD30 ligand-positive (CD30L")
cells in this disorder. Both CD30 and CD30L ex-
pression was upregulated in lesional skin, as was
the density of IL-8" mast cells. Interestingly, en-
gagement of CD30L on mast cells induced the re-
lease of several chemokines (IL-8, MCP-1 and
MIP-1a), but not of histamine and leukotrienes.
Identification of this novel pathway of mast cell
activation highlights the potential role of these
cells in this disorder.

Skin mast cells can be activated by other mecha-
nisms too. Corticotropin-releasing hormone
(CRH) coordinates the systemic stress response,
with repercussions on the inflammatory response
(39). Psoriasis is exacerbated by stress and mast
cells express CRH receptors and synthesize CRH
(40). CRH also stimulates selective secretion of
VEGF-A from mast cells through the activation of
CRH receptors (41). This is an interesting link be-
tween mast cells and angiogenesis in psoriasis and
psoriatic arthritis. It was been suggested that CRH
receptor antagonists might be useful in patients
with psoriasis (40).

Immunologic stimulation of human mast cells ac-
tivates a specific program of gene expression lead-
ing to the de novo synthesis of a wide spectrum of
cytokines (e.g., TNF-a, SCF) (42, 43) and
chemokines (e.g., IL-8/CXCLS8, MIP-1a/CCL3)
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(36). Human dermal mast cells contain and re-
lease TNF-a (44). In addition, mast cells of pso-
riatic skin are strongly positive for TNF-a (45)
and IL-8 (38). Human skin mast cells thus appear
to contribute to the local production of TNF-a in
psoriasis and the IL-8 findings might explain the
neutrophil infiltration in this disorder. Finally,
mast cells in psoriatic skin are strongly positive
for IFN-y (46), thus contributing to Th1 polariza-
tion in this disorder. Collectively, these findings
provide further evidence for the important role of
mast cells in the pathogenesis of psoriasis.

Mast cells are involved in the inflammatory
process in various types of arthritis (47, 48). They
can be found anywhere in the synovial membrane,

but are most numerous beneath the lining layer, in
the sub-intimal areas and in the capsule, frequent-
ly around synovial blood vessels (48-50). The
strategic location of synovial mast cells is also
supported by their close proximity to the periph-
ery of lymphoid aggregates (51), in association
with nerve endings (52), and in fibrous areas of the
synovium (49-51). Synovial mast cell density is
high in several forms of arthritis including psori-
atic arthritis (47, 48). Mast cells contain and re-
lease TNF-a (42, 44), a central mediator of psori-
atic arthritis. There is compelling evidence that
human mast cells express toll-like receptors
(TLRs) (53, 54), a family of evolutionary-con-
served receptors that play a role in the recognition
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An unknown stimulus binds to
receptors on dendritic cells, activating
the innate immune system. Dendritic
cells migrate into lymph nodes,
presenting antigen to T-cells, which are
activated by the dual signal of antigen
presentation and costimulation through
CD28. Activated T-cells proliferate and
migrate into the joint. In the synovial
tissue, T-cells produce [FN-y and other
proinflammatory cytokines that
stimulate macrophages and fibroblasts
as well as chondrocytes, osteoclasts,

Dendritic Cells
Migrate to
Lymph Nodes

Inflamed
Mast Cells Synovium and B cells. Activated macrophages,
fibroblasts and mast cells release a
Mediators variety of cytokines, including TNF-o.

TNF-a is a central component in the
cascade of cytokines, stimulating the
production of additional inflammatory
mediators and the further recruitment of
immune and inflammatory cells into
the joint. Therapeutic targeting of TNF-
a with monoclonal anti-TNF-a
antibodies that bind to TNF-ot with high
affinity (infliximab and adalimumab)
and prevent it binding to its receptors
or a fusion protein consisting of two
p75 TNF receptors linked to the Fc
portion of human IgGT1 (etanercept) has
proven important role of TNF-a in
psoriatic arthritis.
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of foreign and self antigens (55). Expression of
CRH receptors may be enhanced in psoriatic
arthritis (56), and the engagement of this receptor
activates mast cells (41). Finally mast cells ex-
press several isoforms of VEGF, which is the most
potent angiogenic factor (21, 57) and angiogene-
sis is vital for psoriatic arthritis (57-61). These
findings therefore support the idea that mast cells
and their mediators play a pathogenic role in pso-
riatic arthritis.

CYTOKINES AND CHEMOKINES
IN PSORIASIS AND PSORIATIC ARTHRITIS

The psoriatic plaque contain Thl-type cytokines
(IFN-y, IL-2, and TNF-a) (62). APCs infiltrating
the skin lesions also contribute to the local cy-
tokines, which include IL-18, IL-23, and TNF-a..
IL-18 and IL-23 both induce IFN-y production by
Th1 Ilymphocytes. IL-23 is a dominant cytokine in
psoriatic plaques (63, 64) and a monoclonal anti-
body specific for a subunit shared by IL-12 and IL-
23 is effective in the treatment of psoriasis (65).
NKT cells and keratinocyte-NKT cell interactions
enhance the secretion of IFN-y. The psoriasis
plaque is therefore a Thl-skewed microenviron-
ment, composed of a variety of immune cells that
migrate into skin lesions: CD4" and CD8" T-lym-
phocytes, NKT cells, and mature DCs that secrete
Th1-promoting cytokines.

Overproduction of TNF-a in the skin and joint has
been associated with psoriasis and psoriatic arthri-
tis (Fig. 2). The central role of TNF-a. is confirmed
by the therapeutic efficacy of TNF-a—targeting
agents (etanercept, infliximab, and adalimumab)
(66-68). This cytokine is produced by
macrophages, monocytes, mature DC (including
Langerhans cells), polymorphonuclear cells, mast
cells, NK cells, activated T-cells, keratinocytes,
and endothelial cells (44, 69-73). High concentra-
tions of TNF-a have been found in psoriatic le-
sions, but not in unaffected skin (74-78).

Figure 2 shows that TNF-a is a key proinflamma-
tory cytokine with an important pathogenic role in
psoriatic arthritis. Immunostaining of different cy-
tokines in psoriatic arthritis synovium indicated
that TNF-a localized both to the lining layer and
to perivascular macrophages (74). The distribu-
tion of TNF-a expression in psoriatic arthritis is
similar to that described in rheumatoid arthritis, al-
though the extent of staining in the psoriatic form
may be somewhat less as fewer macrophages in-

filtrate the synovial lining. Expression of proin-
flammatory cytokine mRNA, including TNF-a,
was higher in the synovial tissue of patients with
psoriatic arthritis than in normal synovium (79).
Findings from clinical trials targeting the TNF-c.-
TNF-aR (66, 67) point to a central role for TNF-
a in the pathogenesis of psoriatic arthritis.

The relationship between local and systemic mark-
ers of inflammation, the levels of cytokines and
matrix metalloproteinases (MMPs) in synovial flu-
id, were examined in psoriatic arthritis. Concen-
trations of TNF-a, IL-1, IL-6, and IL-8 were high
(78). High levels of IL-10, and MMPs were also
found in the joint fluid of patients with early pso-
riatic arthritis (80), extending the findings of a pre-
vious study that reported increased production of
these cytokines in cell cultures from psoriatic
arthritis joints (78). A variety of other cytokines
are increased in psoriatic lesions such as IL-15,
which promotes CD8" T-lymphocyte expansion,
keratinocyte hyperplasia and resistance to apopto-
sis (81).

Several chemokines (IL8/CXCLS, TARC/CCL17,
MIG/CXCL19, IP-10/CXCL10, MDC/CCL22,
RANTES/CCLS, MIP-3a/CCL20 and MIP-
3p/CCL19) and chemokine receptors (CXCR2,
CXCR3, CCR4, CCL27-CCR10, and CCR6)
found in psoriatic plaques are highly relevant to the
pathogenesis of psoriasis, because they promote
the migration of bone marrow-derived cells into
psoriatic lesions (82, 83).

TOLL-LIKE RECEPTORS IN PSORIASIS

Toll-like receptors (TLRs) are a family of cell-sur-
face receptors that are key components of the in-
nate immune response (55). The innate immune
system rapidly responds to microbial products and
orchestrates the appropriate cellular response to
defend the host. For this to occur, a foreign or-
ganism must be quickly recognized and identified
as a threat. Thus far, ten TLRs have been identi-
fied in human beings. When a specific TLR is en-
gaged by a microbial ligand, a signaling cascade
is set in motion to generate a protective inflam-
matory response. Considering the role of TLRs in
the innate immune response and in triggering in-
flammation, it has been suggested that they may
be involved in the psoriasis, in the recognition of
exogenous, microbial products or either of self-lig-
ands such as fibronectin or heat shock protein
(HSP) (55).
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TLR1 and TLR2 expression was increased in pso-
riatic keratinocytes, whereas TLRS was down-reg-
ulated compared with normal human skin (84).
Monomethylfumarate, a compound used to treat
psoriasis, inhibited the DC response to LPS with
a dramatic decrease in IL-12 and IL-10 production
(85). Another study compared TLR and HSP ex-
pression in normal and psoriatic skin. HSPs are
naturally occurring ligands that engage TLR4 (86).
They are overexpressed by keratinocytes in psori-
atic lesions and it has been suggested they might
serve as an autoantigen for T cells that migrate in-
to psoriatic lesions. This same study found that
TLR1 was expressed in normal skin and psoriatic
plaques by epidermal and dermal DCs, TLR2 was
expressed by dermal DCs, and TLR4 was ex-
pressed by epidermal and dermal DCs, with epi-
dermal keratinocytes expressing TLR4. In vitro
treatment of DC cultures with HSP increased the
production of IL-12, suggesting that keratinocyte-
derived HSP may play a role in the maturation and
cytokine secretion by DCs in psoriatic lesions.
HSPs may serve as triggers for both innate immu-
nity (by TLR4 activation and maturation of APCs
with the production of inflammatory cytokines)
and adaptive immunity (autoreactive T cells spe-
cific for HSP).

The A domain of fibronectin is another endoge-
nous ligand that can activate TLR4 (87). This do-
main is present at the basement membrane of un-
involved skin of patients with psoriasis, but not in
the skin of healthy controls (88). The A domain of
fibronectin can trigger TLR4 in Langerhans cells,
raising the intriguing possibility that keratinocyte-
derived A domain of fibronectin play a role in
Langerhans cell maturation, and cytokine (TNF-o
and IL-12) secretion. This event can promote anti-
gen presentation to Th1 lymphocytes that migrate
into psoriatic plaques. In addition, the TLR7/8 ag-
onist imiquimod applied topically to psoriasis le-
sions can aggravate them (89). Lastly, single
stranded messenger RNA from HIV-1 and other
viruses activates TRL7 (90) and HIV-1 infection
can exacerbate psoriasis (91). Thus, TLR7/8 sig-
naling may be involved in psoriatic exacerbations
by naturally occurring or synthetic ligands of these
TLRs. In conclusion, evidence is emerging that
TLRs may be involved in the pathophysiology of
certain aspects of psoriasis. Further studies are
needed to clarify their contribution to the inflam-
matory processes in psoriasis and in psoriatic
arthritis and to investigate whether specific TRL
antagonists are of any use in these disorders.

ANGIOGENESIS IN PSORIASIS
AND PSORIATIC ARTHRITIS

The formation of new blood vessels (angiogene-
sis) is vital for numerous inflammatory and im-
mune disorders including psoriasis and psoriatic
arthritis (92). Several growth factors play impor-
tant roles in angiogenesis. VEGF is the most po-
tent proangiogenetic factor (93). Psoriatic lesions
contain growth factors such as VEGF, transform-
ing growth factor-o. (TGF-a), insulin-like growth
factor-1 (IGF-1) and nerve growth factor (NGF).
These contribute to epidermal hyperplasia, angio-
genesis, resistance to apoptosis, and T-lymphocyte
activation. Cutaneous blood vessels show major
abnormalities in psoriatic lesions (94). There is
compelling evidence that VEGF expression is in-
creased in lesional psoriatic skin, that the serum
levels of VEGF are elevated in patients with severe
disease, and that VEGF levels are related with dis-
ease activity (58-61, 95). Young et al provided ev-
idence, based on the analysis of polymorphisms of
the VEGF gene in psoriatic and healthy individu-
als, that an “angiogenetic constitution” might de-
termine psoriasis susceptibility (96). A role of
VEGEF in the pathogenesis of psoriasis was further
supported by the phenotype of transgenic mice
with overexpression of VEGF. These mice had en-
hanced skin vascularity and vascular permeabili-
ty (97) and spontaneously developed chronic in-
flammatory skin lesions that histologically close-
ly resemble human psoriasis (98). These changes
included epidermal hyperplasia, up-regulation of
adhesion molecules, accumulation of CD4" T-lym-
phocytes within the dermis and of CD8" cells with-
in the epidermis. Moreover, VEGF transgenic
mice showed the characteristic Koebner phenom-
enon, with induction of chronic psoriasis-like le-
sions by unspecific skin irritation (98).
Angiopoietins are the major ligands of the en-
dothelial receptor Tie 2. Angiopoietin 1 (Ang-1)
induces Tie 2 signaling and maintains vessel for-
mation, while angiopoietin 2 (Ang-2) destabilizes
vessels by blocking Tie 2 signaling as an antago-
nist of angiopoietin 1 and acts with VEGF to ini-
tiate angiogenesis (99). Ang-1 and 2 and Tie 2 ex-
pression is upregulated in perivascular regions in
lesional psoriatic skin (100, 101).

Angiogenesis is also a prominent early event in
synovial membrane psoriatic arthritis (102, 103).
VEGF and TGF-f levels are elevated in the joint
fluid in early psoriatic arthritis (104) and expres-
sion of angiopoietins colocalise with VEGF in
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perivascular areas of the psoriatic arthritis syn-
ovial membrane. (102). Mast cells, which are
closely associated with blood vessels and increase
at angiogenic sites, can contribute to various as-
pects of angiogenesis (105, 106). Mast cells syn-
thesize and release various proangiogenic factors
(histamine, tryptase, TGF-p, IL-8, VEGF, and I-
309/CCL1) (107-109). The expression of VEGF
and its receptors and their functional interactions
in human basophils and mast cells has been re-
cently explored. Mast cells and basophils consti-
tutively express several isoforms of VEGF-A
(VEGF-A,,,, VEGF-A , and VEGF-A ) and their
immunologic and non immunologic activation in-
duces the release of VEGF-A. VEGF-A is chemo-
tactic for mast cells and basophils presumably
through interaction with VEGF receptors and core-
ceptors (NRP1 and NRP2) present on these cells
(21, 57).

The urokinase plasminogen activator (uPA) and
its high-affinity receptor (uPAR) are involved in
tissue remodeling and vessel sprouting (92). The
uPA receptor (uUPAR) is expressed by human ba-
sophils (110) and by mast cells (111). It thus ap-
pears that mast cells and basophils might con-
tribute to angiogenesis in psoriasis and psoriatic
arthritis.

CONCLUSIONS AND PERSPECTIVES

Psoriasis and psoriatic arthritis are complex dis-
eases that rely on immune-mediated inflammation
to sustain epidermal hyperproliferation and joint
damage, respectively. In both conditions an intri-
cate network of different cell types interacts to in-
duce chronic inflammation. Advances in im-
munology, cell biology, and molecular biology
have given valuable details about the immune cells,
effector molecules, and signaling pathways in-
volved in these processes.

Advances in understanding the immunopathogen-
esis of psoriasis and psoriatic arthritis have led to
worthwhile improvements in treatment. Targeting
the TNF-a/TNF-aR system clearly benefits the
majority of patients with psoriatic skin lesions, but
they can also improve the inflammatory processin
psoriatic joints. However, we still lack a real cure
for these common and enigmatic diseases, and we
have not identified the genes or antigens responsi-
ble. Given the remarkable success of several dif-
ferent agents that target TNF-a in psoriasis and
psoriatic arthritis, it is likely that further agents

aimed at other cytokines or chemokines will sur-
face in the near future. However, not all of these bi-
ological drugs work equally well in all patient
groups, nor does the same drug necessarily improve
both skin and joint manifestations equally. Also,
since these drugs require injections for systemic
delivery, local and systemic reactions can occur.
Potential targets in the treatment of psoriasis and
psoriatic arthritis include T-cell trafficking, T-cell
activation and cytokine/chemokine antagonists. Fu-
ture challenges include careful monitor of patients
receiving new biologics and investigating the long-
term sequelae of chronic inflammatory inhibitors as
regards potential risks of infectionsand neoplasms.
In addition, we must carry on working to define the
cytokine and chemokine networks operative both
upstream and downstream from TNF-a. Then we
need to identify the specific triggers that explain the
initial production of cytokines and chemokines. Fi-
nally, it will be important to elucidate the genetic
basis by which these heterogeneous diseases are
transmitted from generation to generation.
Perhaps lessons learned from research into the im-
munopathogenesis and treatment of these complex
disorders will also pay dividends for patients with
other cytokine-mediated chronic inflammatory au-
toimmune diseases too, including rheumatoid
arthritis, lupus erythematosus, and inflammatory
bowel disorders.
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