The clinical spectrum of primary Sjögren’s syndrome: beyond exocrine glands

M.C. Leone, A. Alunno, G. Cafaro, V. Valentini, E. Marucci, E. Bartoloni, R. Gerli

Rheumatology Unit, Department of Medicine, University of Perugia, Italy

SUMMARY

Although primary Sjögren’s syndrome (pSS) is a mild indolent chronic disease mainly characterized by mucosal dryness in the majority of cases, a consistent subgroup of patients display extra-glandular manifestations. Virtually any organs and systems can be affected, leading to a more serious disease prognosis. Therefore, the prompt identification of patients at higher risk of extra-glandular manifestations is necessary to start a thorough follow up and an aggressive treatment. The aim of this review article is to provide an overview of epidemiological, clinical and serological features of extra-glandular manifestations in pSS as well as current knowledge about putative biomarkers useful in clinical practice.

Key words: Sjögren’s syndrome; Extra-glandular manifestations; Cardiovascular risk.

INTRODUCTION

Primary Sjögren’s syndrome (pSS) is a complex and heterogeneous chronic autoimmune disease primarily characterized by a focal lymphocytic chronic inflammation of exocrine glands leading to progressive loss of secretory function (1). Therefore, the specific case-history of pSS is dominated by signs and symptoms of mucosal dryness. However, although salivary and lachrymal glands represent the main target of pSS, several other organs and systems may be affected during the disease course in at least one third of patients, resulting in a plethora of systemic clinical manifestations, serological abnormalities and complications (2). The most severe complication of pSS is non-Hodgkin lymphoma occurring in about 5% of patients (3) and dramatically worsening disease prognosis. In this regard, the prompt identification of pSS patients with higher risk of developing extraglandular manifestations is mandatory for correct management. Low C3 and C4 levels, cryoglobulins, monoclonal component, anti-Ro/SSA, anti-La/SSB, rheumatoid factor and hypergammaglobulinaemia represent poor prognostic serological factors in pSS associated with lymphoma and severe extraglandular features (2). Furthermore, histological features such as the presence of germinal centre-like structures in the minor salivary glands have been associated with higher risk of developing lymphoma (4).

The purpose of this review article is to discuss current knowledge of extra-glandular manifestations in pSS not secondary to mucosal dryness, excluding pathogenesis and clinical manifestations of lymphoproliferative disorders.

MUSCULOSKELETAL INVOLVEMENT

Musculoskeletal manifestations such as myalgia, arthralgia and morning stiffness are present in as many as 90% of patients, while clinically evident arthritis is found in up to 17%. In a recent study conducted on 17 female patients with pSS and 18 patients with secondary SS (sSS), ultrasonography (US) was used to confirm the non-erosive nature of joint involvement in pSS and to discriminate between pSS and RA-associated SS. Synovitis was commonly detected in pSS, mainly in metacarpophalangeal joints (MCP), wrists, and knees. Bone erosions also may occur. Power Doppler signal as well as bone erosions could be rarely detect-
ed and the latter represented the better performing US feature to discriminate between pSS and RA-associated SS (5).

Muscle involvement is relatively frequent as diffuse pain and/or muscular weakness. Myalgia has been reported in 33% of patients although in about 47-55% of cases a possible overlap with fibromyalgia has been described (6, 7). Indeed, the prevalence of fibromyalgia in pSS is about 30% (8). Myositis has been reported in 3% of patients. Nonetheless, 5% to 73% of patients may reveal subclinical histopathological myositis (9-11). Muscle biopsy, the gold standard for the diagnosis of inflammatory myopathies, generally shows a perivascular inflammation or an interstitial myositis without involvement of muscle fibres. Although muscular involvement is usually detected over the course of pSS (10), in some cases it may also appear at disease onset. A recent study reported the prevalence of myositis in an Italian multicenter cohort of 1,320 pSS patients. Among these, 17 patients presented signs and symptoms suggestive for IM; however only 6 cases had histologically confirmed myositis and, according to Bohan and Peter’s diagnostic criteria, only 10 patients fulfilled at least the 3 required criteria for a probable diagnosis of myositis (12). Overall, a good response to immunosuppressive agents was observed with a good prognosis. Of interest, Espitia-Thibault et al. described a peculiar histological pattern in the muscle biopsy of 4 patients with pSS with germinal centre-like structures resembling those of minor salivary glands (13). In these patients, the clinical presentation was non-specific and non-severe with myalgias, muscular weakness and normal or elevated CK values.

CUTANEOUS INVOLVEMENT

The most prevalent skin findings in pSS include xerosis, purpura associated with vascular or hematologic abnormalities, Raynaud’s phenomenon, annular erythema (AE) and other manifestations related to disease-induced cutaneous dryness (i.e., eyelid dermatitis and angular cheilitis). AE is an erythematous, photosensitive rash that appears as annular polycyclic lesions characterized by a wide elevated border and central pallor and may result in hypopigmentation. The histopathological hallmark is represented by perivascular lymphocytic infiltration. AE is mainly localized on the face, upper arms, neck and may be the first manifestation of the disease. The dramatically higher prevalence in Asian patients suggested a possible effect of ethnic background. Three clinical types of AE have been described in Japanese patients: type I is an isolated doughnut-like erythema with an elevated border, type II resembles subacute cutaneous lupus (SCLE)-like marginally scaled polycyclic erythema and type III is a papular insect bite-like erythema (14). A recent retrospective study including 377 Spanish pSS patients revealed that AE is not an exclusive cutaneous feature of Asian patients with pSS. Indeed, 9% of Spanish pSS patients were diagnosed with AE and in over 70% this was before the diagnosis of pSS (15).

Vasculitis can affect different organs and systems, with the skin being the most frequent site. Hypergammaglobulinemic vasculitis (HGV) is a cutaneous vasculitis, related to a benign B-cell proliferation, whereas cryoglobulinemic vasculitis (CV) is a systemic immune complex-mediated vasculitis with complement activation and a higher risk of lymphoma. It is therefore required to differentiate the two forms in pSS patients with purpura. As observed by Quartuccio et al. in a large Italian cohort of pSS patients, peripheral neuropathy, low C4, leucopenia, serum monoclonal component and the presence of anti-SSB/La antibodies characterized CV whereas rheumatoid factor positivity, leucopenia, serum monoclonal component, anti-SSA/Ro antibodies and lymphoma were significantly associated with HGV (16).

The detection of ANCA positivity in pSS patients does not necessarily reflect an underlying ANCA-associated vasculitis (AAV) or single-organ AAV (17). However, several cases of coexisting pSS and AAV have been described (18).

PULMONARY INVOLVEMENT

The prevalence of pulmonary involvement in patients with pSS is estimated at between
were diagnosed with ILD prior to the di-
agnosis of pSS (24). The histopathological
patterns observed were NSIP, UIP, OP and
LIP (in this order) and the majority of ILD
patients had an acute/subacute onset (24).
Overall, in 84% of patients pSS-ILD was
either stable over time or worsening, while
older age was associated with ILD deterio-
ration. Therefore higher rates of mortality
and morbidity in PSS are most likely re-
lated to ILD (23).
Amyloidosis, granulomatous lung disease,
pulmonary lymphoma, cystic lung disease,
pseudolymphoma and pulmonary arterial
hypertension have been also described but
with lower frequency in pSS.

RENAI INVOLVEMENT

Renal disease can occur either as epithelial
disease with a predominantly mononuclear
lymphocytic infiltration resulting in tubulo-
interstitial nephritis (TIN) or as non-ep-
ithelial disease with a secondary immune
complex-mediated process resulting in glo-
merulopathy. Overall, renal involvement
occurs in 4-5% of pSS patients (25-27).
TIN is the predominant condition, found in
75% of patients, with the remaining 25%
of patients having glomerular disease (28,
29). In more detail, proximal injury was
observed in 10-42%, distal renal tubular
acidosis in 5-24% and a concentrating de-
fact in 17-28%.
Type II proximal tubular dysfunction con-
sists of proteinuria, aminoaciduria, gly-
osuria, phosphaturia, uricosuria and bi-
carbonaturia (Fanconi syndrome) and may
lead to osteomalacia as a consequence of
phosphate wasting. Type I and IV distal ren-
al tubular acidosis is due to a complete or
incomplete inadequate H+ secretion in the
cortical collecting duct by the acid-secre-
ting a-intercalated cells (30). Distal renal
tubular acidosis in pSS was found to be as-
associated with anti- Ro and La antibodies,
longer disease duration, xerostomia, hyper-
tension, higher creatinine and proteinuria,
and also hypergammaglobulinaemia (31).
PSS patients may also show hypokalaemic
symptoms, including paralysis (32), neph-
rolithiasis or nephrocalcinosis. Nephro-
genic diabetes insipidus and other acquired
tubular defects affecting other tubular segments may also occur, the latter causing acquired Bartter or Gitelman-like syndromes. Glomerular involvement is uncommon and late in the course of pSS. It is usually associated with mixed cryoglobulinaemia and proliferative glomerulonephritis on kidney biopsy (27). The majority of glomerular diseases reported in pSS is represented by immune complex-mediated conditions, usually with the characteristic mesangio-proliferative glomerulonephritis (MPGN), which is the most common glomerular lesion in pSS and is caused by the deposition of immune complexes, often cryoglobulins. MPGN may occur either alone or as part of a systemic vasculitis. It is also associated with lymphoma development and thus increased morbidity and mortality (27). Shavit et al. emphasised that patients with pSS can show atypical kidney pathology such as pauci-immune necrotising crescentic ANCA-related glomerulonephritis. ANCA positivity in SS might be associated with a higher burden of extraglandular manifestations, and a possible tendency to develop pauci immune glomerulonephritis (33).

PERIPHERAL AND CENTRAL NERVOUS SYSTEM INVOLVEMENT

Neurological manifestations have a frequency ranging from 10 to 60% and they may appear before other signs and diagnosis of pSS (34). The involvement of the peripheral nervous system (PNS) is more common and dominant at the upper limbs and the trunk. It may appear in different forms: sensory-motor polyneuropathy, pure sensory neuropathy (peculiar to pSS), neuronopathy (related to lymphocytic infiltration of the dorsal root ganglia), autonomic neuropathy, cranial nerve involvement (mainly the cochleovestibular nerve but also the trigeminal and facial nerves), mononeuritis multiplex, chronic polyradiculoneuropathy, motor neuron disease or small fiber neuropathy (diagnosed on skin biopsy). Symmetrical axonal sensorimotor polyneuropathy is the most common type of polyneuropathy and is associated with higher monoclonal B-cell proliferation markers (hypergammaglobulinemia cryoglobulinemia, monoclonal gammopathy, serum free light chain ratio, and B-cell lymphoma) (35). Pure sensitive neuropathy (PSN) mainly occurs in females with a younger age at pSS diagnosis and fewer immunological markers. PSN has a chronic and insidious onset with a poor response to treatment with corticosteroids or immunosuppressive agents. Conversely, multiplex mononeuropathy is strongly associated with underlying vasculitis and high prevalence of severe parotid involvement, extraglandular features, cytopenias and immunological markers, consistent with a high systemic activity. Therefore, although this PNS manifestation displays excellent therapeutic response to corticosteroids and immunosuppressive agents, patients have a bad prognosis and low survival rate, due to the underlying systemic vasculitis (36). Sensorimotor neuropathy or mononeuritis multiplex mainly result from immunovascular injury, as indicated by the association with Raynaud’s phenomenon, cutaneous vasculitis, and renal involvement. Conversely, sensory neuropathies are more probably linked to lymphocytic infiltration rather than to cryoglobulinemia and have almost no extraglandular involvement. Finally, as far as the parasympathetic cholinergic system is concerned, recent data demonstrated that the dysfunction of this system observed in pSS appears to be independent of gland inflammation and atrophy (37). Central nervous system (CNS) involvement in pSS is less frequent than PNS involvement and is characterized by heterogeneous manifestations like stroke associated with CNS vasculitis, seizure, parkinsonism, chorea, central pontine myelolysis, cerebellar ataxia, encephalopathy, aseptic meningocerehalitis, transverse myelitis, chronic progressive myelitis, optic neuropathy, neuromyelitis optica, multiple sclerosis-like relapsing-remitting syndromes (34). High variable prevalence of CNS manifestations ranging from 2.5 and 60% of all pSS patients has been reported. Most common symptoms are headache (46.9%), followed by cognitive (44.4%) and mood disorders (38.3%). Seizures are
observed in 20% of cases, pyramidal signs in 10% of cases, cerebellar signs in 10% of cases, neuritis optica and meningoencephalitis in less than 5% of cases (38). Headache, cognitive disorders and psychiatric symptoms appear to be associated with anti-SSA antibodies and Raynaud’s phenomenon, the latter suggesting a possible underlying endothelial dysfunction (autoimmune endothelitis) of the cerebral microcirculation or a potential inflammation-mediated shift of the neurovascular coupling (38). Interestingly, abnormalities in the electrophysiological parameters can also be detected in asymptomatic patients with longer disease duration, salivary gland ultrasonography abnormalities and elevated inflammatory markers in blood tests (39).

■ SWALLOWING DISORDERS, GASTROINTESTINAL AND LIVER MANIFESTATIONS

Swallowing disorders are relatively common in pSS and increase with disease severity (40). Both oropharyngeal and esophageal swallowing disorders have been reported in this population, often attributed to sicca of the mouth and throat, loss of dentition, cricoarytenoid joint arthritis, neuropathy, esophageal abnormalities, and gastroesophageal reflux. The prevalence of swallowing disorders in pSS is over 60% and risk factors were represented by laryngeal irritants, such as secondary exposure to tobacco smoke, post nasal drip, frequent sinus infections, esophageal reflux, and acidic foods which may be related to reflux (41). Several other risk factors included neck/throat tension, voice problems lasting longer than 4 weeks, which seem to have anatomical connections to structures involved in swallowing. Chronic, longstanding swallowing disorders are common in pSS and consistently affect the patients’ quality of life. The lack of salivary secretion may account for a reduced capacity to balance the gastric reflux pH leading to heartburn. On the other hand, reduced acid production has also been observed in pSS. Dyspepsia without major endoscopic alterations has been reported in about 20% of pSS patients. An infection supported by Helicobacter pylori should always be treated as it represents a risk factor for the development of gastric lymphoma.

The liver is mainly involved due to associated conditions such as autoimmune hepatitis or primary biliary cirrhosis. Abnormal liver function tests can be detected in up to 50% of patients but usually they are mild and not associated with any organ-specific condition (42).

■ CARDIOVASCULAR MANIFESTATIONS

Heart involvement has been scarcely reported in pSS. However, studies based on echocardiography revealed a consistent prevalence of valvular disease, with mild mitral and aortic regurgitation being the most prevalent conditions, and of pulmonary hypertension. Sub-clinical pericardial effusion can also be detected in a small proportion of patients (43, 44). Importantly, pSS patients with anti-Ro and anti-La antibodies wishing to become pregnant should be informed about the risk of congenital heart block (CHB) (45). CHB is characterized by autoimmune-mediated damage to the fetal heart conduction system and in the majority of cases results in irreversible complete atrioventricular block. Unfortunately, preventive strategies are lacking, hence CHB is still a severe life-threatening disorder. Altered immune system function and inflammatory factors accelerate both the initiation and the progression of atherosclerosis (ATS) in patients with systemic rheumatic diseases, in particular RA and systemic lupus erythematosus. With regard to pSS, increasing evidence confirms that higher cardiovascular (CV) ATS is a severe complication also in this disease. Endothelial dysfunction is the first stage of subclinical ATS, promoted by an altered balance between endothelial microparticles (EMP) released by damaged endothelium and endothelial progenitor cells (EPCs) compromising reparative capacity. We recently observed that pSS patients display increased proportions of both EMPs and EPCs with respect to normal subjects (46). These data underline a condition of chronic persistent endothelial fragmentation.
characterizing pSS patients independently of disease clinical activity, inflammatory background or disease severity. Sub-clinical CV involvement can be assessed through plasma asymmetric dimethylarginine (ADMA) concentration, coronary flow reserve (CFR), intima media thickness (cIMT), pulse wave velocity (PWV) and myocardial deformation. In pSS ADMA, right and left PWV and left cIMT resulted higher, whereas CFR resulted lower in comparison with normal subjects. In addition, despite left ventricular systolic and diastolic function being similar in pSS and controls, echocardiographic findings support the presence of myocardial alteration in the former (47-50). Interestingly, not only the Framingham Risk Score (FRS) but also the SS damage index (SSDI) were independently associated with PWV (48). In this regard, an increased subclinical atherosclerosis is observed only in pSS patients with a longer disease duration, when the chronic inflammation might have caused a stabilized arterial wall damage. Furthermore, advanced age, higher focus score on minor salivary gland biopsy and reduced salivary flow rates, the presence of Raynaud’s syndrome and reduced lymphocyte numbers were predictors of plaque formation (50).

Two recent large epidemiological studies attempted to characterize the prevalence of traditional CV risk factors and CV events in pSS patients (51, 52). Hypertension was the most prevalent CV disease risk factor, followed by hypercholesterolaemia, and hypertriglycerideremia. Consequently a higher proportion of pSS patients were taking antihypertensive and statin therapies in comparison with normal subjects. Conversely, smoking, obesity and diabetes mellitus were less prevalent in pSS than in controls. At least one CV event occurred in about 5% of patients, cerebrovascular events being the most common CV manifestation, followed by heart failure, angina and myocardial infarction. Older age, longer disease duration and the co-occurrence of severe extra-glandular manifestations were significantly associated with an increased prevalence of CV events. With regard to metabolic syndrome (MetS), this also resulted more prevalent in pSS patients compared with controls and associated with an abnormal adipokine profile. The relationship between MetS and IL-1β suggests the role of inflammation in the pathogenesis of this condition. On the other hand, no association between MetS and disease duration, extra-glandular involvement or prednisone use was observed (53).

HAEMATOLOGICAL MANIFESTATIONS

Chronic anemia and hypergammaglobulinemia are the most prevalent hematologic manifestations encountered at diagnosis and during the course of pSS. Leukopenia can also occur in about 20% of patients (54, 55). Only a few studies have been conducted on hematologic abnormalities and the significance of cytopenia in pSS is often disregarded in daily practice because its degree is usually mild and asymptomatic. Interestingly, however, any cytopenia has been associated with severe ocular surface damage even in patients with few ocular symptoms, while leukopenia with cardiovascular manifestations such as angina and neutropenia has been associated with a higher risk of lymphoproliferation (56). With regard to hypergammaglobulinemia and cryoglobulinemia, their association with higher risk of lymphoproliferation is now well established (16, 57).

CONCLUSIONS

The clinical picture of pSS is pleomorphic, ranging from mild sicca symptoms to severe life-threatening involvement of vital organs. It is therefore crucial to recognize patients at higher risk of extra-glandular manifestations and of CV events to ensure prompt preventive strategies and aggressive treatment when required. The identification of reliable biomarkers allowing the stratifying of patients with different disease evolution will ensure an optimal management of patients with this disease.

Conflict of interests: nothing to disclose.
REFERENCES

